


# Distribution Reliability Model

Optimizing budget for consistent and efficient  
electrical power delivery

# Background

# Background



## **Improving Reliability**

PUD wanted to ensure spending will result in sustainable improvements to infrastructure.

## **Data-Driven Spending**

Effects of budget were estimated by stakeholders without any real mathematical support.

## **System Modelling**

Complex inputs and interactions make resource allocation difficult.

# Data and Relationships



**Historic Outages and Restoration**



**Weibull Asset Failure Curves**



**Transmission Asset Registry and Installations**



**Vegetation Spending and Outage Reduction Regression**



**Animal Populations and Infrastructure Installations**



**Independent Weather Controls**

# Architecture

# Simulations in AnyLogic

## **Single Runs**

Get single possible result from user-provided inputs.

## **Monte Carlo**

Specific experiment to get realistic upper and lower bounds for reliability changes based on inputs.

## **Optimization**

Find realistic resource allocation scenarios to achieve desired reliability metric.

# AnyLogic Cloud API



## AnyLogic Cloud

User requests experiment from AnyLogic. Simulations run in cloud and are fetched via API.

## Backend

Experiment control handled via backend. Once run, data is stored for easy and custom comparisons.

## Frontend

Users can easily create and compare experiments. Custom frontend allows for new features and fine-tuned control.

# Web Application



## Granular Input Control

Custom frontend allows for more control of inputs. Advantageous for end user experience and smoother experiment creation.

## Unique Outputs and Data Visualization

New outputs and data visualization are possible. Users can toggle between various input types. GIS incorporation in beta testing.

## New Experiment Types

Custom stack allows for new experiments. Advanced regression, experiment combinations, and machine learning enabled.

# End Product

## New Experiment

## Inputs

District Simulation

+

Hazard Spotlight

+

Parameter Variation

+

Run Experiment

Cancel

Clear Inputs

### Parameter Variation Focus

Please select a hazard class to spotlight.

## New Experiment

## Inputs

District Simulation +

Hazard Spotlight +

Parameter Variation +

Run Experiment

Cancel

Clear Inputs

### New District Simulation

| SIMULATION CONTROLS               | VALUE                        | DESCRIPTION                                                                           |
|-----------------------------------|------------------------------|---------------------------------------------------------------------------------------|
| Experiment Name                   | New Simulation Experiment 26 | Name of experiment to reference later when searching and comparing.                   |
| Total Proactive Budget Limit (\$) | \$10,000,000                 | Hard cap for the sum of proactive wildlife, cable, and vegetation management budgets. |

Other considerations



## District Simulation Experiment Setup

### Purpose

The district simulation experiment allows users to quickly see what might occur with a certain set of inputs. It runs only once and contains many random outcomes, such as an underground cable randomly failing. This means that the results could greatly change from one simulation to another, with almost identical inputs.

While limited in use, it provides a very quick look at a possibility, and could allow a user to understand a "worst-case" or "best-case" scenario.

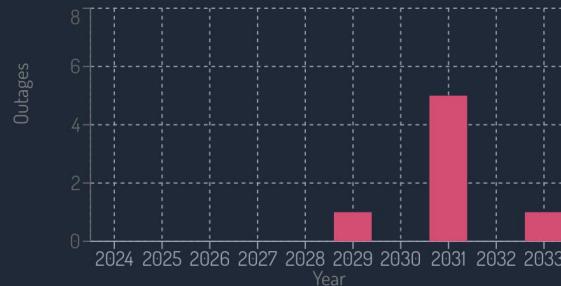
### Experiment Inputs

This section details each group of inputs as well as a brief explanation of each.

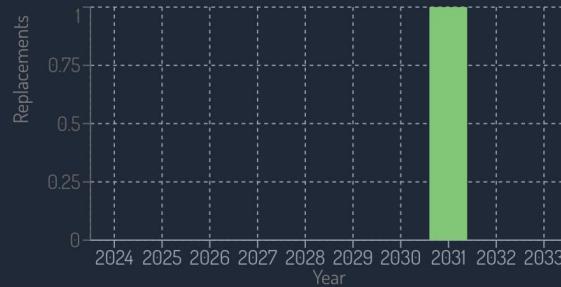
### Simulation Controls

- Experiment Name:** For internal reference, a name of the experiment. This is used later in experiment history and viewing. Users can search for a past experiment by name.
- Total Proactive Budget Limit (\$):** A helper parameter that assists the user in not exceeding a budget.

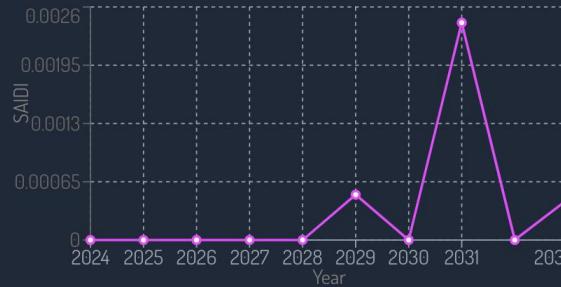
### District Changes


- New Customers per Year:** Its only effect is to improve reliability metrics by increasing the denominator in SAIDI calculations. This number would be positive if the number of customers were to increase without infrastructure changing, perhaps via increased population density.
- Chelan County Population Increase per Year (%):** This input is directly tied to squirrel and rodent populations, based on empirical evidence. The higher it is, the less effect new animal guards will have on reducing wildlife outages.

### Labor Pool


## Summit Annual Results

Back to All


## Summit Underground Cable Failures



## Summit Underground Cable Replacements



## Summit SAIDI



# Results

# Results and Outcomes



## New Spending Insights Unlocked

New strategies for spending and bolstering infrastructure discovered during data discovery and modelling.

## Budget Adoption

Model-supported recommended budget approved by board.

## Reassurance and Sustainability

Stakeholders have confidence in infrastructure moving forward and can focus on improvements.

# Conclusion



# Q&A

## **Sam Henrichs**

[shenrichs@sapereconsulting.com](mailto:shenrichs@sapereconsulting.com)  
+1 262-388-3309

## **Sapere Consulting**

[sapereconsulting.com](http://sapereconsulting.com)